versity of Leeds, for allowing this work to be done in his department.

Glossary

А, В, С	constants
∆G≢	Gibbs excess free energy of mixing, J/mol
М	molecular weight
V	molal volume, L/mol
\overline{V}	partial molal volume, L/mol
x _i	mole fraction of (i) in the liquid
μ	viscosity coefficient, (N s)/m ²
ν	kinematic viscosity, m ² /s
μ_{ii}	constant

ν_{ij}, ν_{ji}	constants			
ϕ	volume fraction			

Literature Cited

- (1) Bingham, E. C., "Fluidity and Plasticity", McGraw-Hill, New York, N.Y.,
- (2) Bretsznader, B., "Prediction of Transport and other Physical Properties of Fluids", Pergamon Press, New York, N.Y., 1971. (3) Cullinan, H. T., *Ind. Eng. Chem. Fundam.*, **7**, 177 (1968).
- (4) Ghai, R. K., Dullien, F. A. L., Can. J. Chem. Eng., 49, 260 (1971). (5) Glasstone, S., Laidler, K. J., Eyring, H., "Theory of Rate Processes", McGraw-Hill, New York, N.Y., 1941.
 (6) Heric, E. L., Brewer, J. G., *J. Chem. Eng. Data*, **12**, 574 (1967).
- (7) McAllister, R. A., AIChE J. 6, 427 (1970).
- Medanis M. S., Hasan, M. A., *Can. J. Chem. Eng.*, **55**, 203 (1977).
 Medani, M. S., Hasan, M. A., *J. Appl. Chem. Biotechnol.*, **27**, 80 (1977).
 Redlich, O., Kister, A. T., *Ind. Eng. Chem.*, **40**, 345 (1948).
 Tamura, M., Kurata, M., *Bull. Chem. Soc. Jpn.*, **25**, 32 (1952).

Received for review November 30, 1976. Accepted July 6, 1977.

Table I. Density Data for Mg(NO₃)₂·6H₂O-NaNO₃ Mixtures

Additivity of Volumes in Hydrated Melts: Mixtures of Magnesium Nitrate Hexahydrate with Sodium and Potassium Nitrate

Surender K. Jain,* Harbans L. Jindai, and Niraj P. Kulshreshtha Hindu College, University of Delhi, Delhi-110007, India

Densities of molten mixtures of Mg(NO₃)₂·6H₂O with NaNO₃ and KNO₃ were measured as a function of temperature and univalent nitrate content. The equivalent volumecomposition isotherms were linear with respect to equivalent fraction of NaNO₃ or KNO₃, over the composition range investigated. Partial equivalent volumes (V_{is}) of the constituents were computed by extrapolating these linear isotherms.

The volumes in many binary molten nitrate mixtures (5, 6) and hydrated melts (1, 3) are reported to be additive. The principle of additivity provides a useful basis for estimating the equivalent volumes of mixtures from limited density data. In continuation of the studies (3, 4) regarding physicochemical behavior of hydrated salts, the results of the density measurements for the system Mg(NO₃)₂·6H₂O-(Na, K)NO₃ are presented in this paper.

Experimental Section

Material. Salts used in this study were AnalaR (BDH) grade. Alkali metal nitrates were dried by heating at about 200-250 °C for several days. Volumetric analysis of Mg(NO₃)₂·6H₂O using EDTA established its water content within ± 0.02 of the stoichiometric value of 6.

Apparatus. A manometric densitometer originally designed by Husband (2) was modified so as to permit a direct measurement of volume of a known amount of the melt. The densitometer, its calibration, and the measuring technique have been described earlier (3). The temperatures of the oil bath (ca. 15 L) were controlled and measured with a precision of ± 0.1 °C. The estimated precision of the reported densities is $\pm 0.1\%$.

Results and Discussion

The density data for the mixtures investigated have been presented in Tables I and II. The coefficients of linear density/ equivalent volume-temperature equations, for various com-

Temp, °C	Density, g cm ⁻³	Temp, °C	Density, g cm ⁻³
	9.63 <i>ª</i>	1	4.9 <i>ª</i>
94.7	1.5520	93.0	1.5610
100.2	1.5470	95.4	1.5590
10 7 .0	1.5420	100.0	1.5550
117.0	1.5330	105.1	1.5520
120.0	1.5320	109.0	1.5490
128.0	1.5260	115.0	1.5450
		121.0	1.5360
		126.0	1.5320
		132.0	1.5270
	20.5 <i>ª</i>	2	5.0 <i>ª</i>
89.0	1.5860	96.3	1.5940
91.0	1.5830	97.6	1.5930
95.1	1.5800	100.2	1.5900
99.7	1.5770	108.0	1.5790
105.5	1.5720	112.0	1.5760
110.0	1.5670	116.0	1.5720
116.5	1.5640	121.0	1.5690
123.0	1.5590	128.0	1.5630
129.0	1.5520		

^e Mole percent NaNO₃.

positions, along with the standard deviation of the fit and the maximum departure of any experimental observation from the "best" straight line drawn through the points, are recorded in Table III. Isotherms of equivalent volume (Ve) vs. equivalent fraction (x') of the univalent nitrate in the mixture were linear (Figure 1) within the limits of experimental accuracy, over the composition range studied, and could be described by equations of the type

$$V_{\rm e}(\rm cm^3 \ equiv^{-1}) = A - Bx^4$$

40.0	eneny sala i	••••••••••••••••••••••••••••••••••••••	2 01120 1010	-3 min tai 00			
Temp, °C	Density, g cm ⁻³	Temp, °C	Density, g cm ⁻³	Temp, °C	Density, g cm ^{−3}		
4	I.0ª	14	.46ª		19.0 <i>ª</i>		
85.6	1.5482	82.7	1.5623	89.6	1.5693		
90.9	1.5447	85.7	1.5597	90.5	1.5684		
95.6	1.5407	87.5	1.5588	92.4	1.5665		
98.7	1.5377	90.7	1.5562	95.5	1.5646		
102.6	1.5258	95.7	1.5518	101.6	1.5595		
107.4	1.5225	100.0	1.5483	106.7	1.5568		
112.5	1.5183	103.0	1.5457	109.0	1.5545		
117.0	1.5149	107.0	1.5423	116.5	1.5480		
122.0	1.5120	112.0	1.5388	122.0	1.5417		
128.0	1.5083	116.0	1.5354	130.0	1.5358		
		121.0	1.5320				
		125.2	1.5278				
		132.0	1.5252				
22.36		26	6.56	4	40.0		
86.8	1.5952	87.6	1.6090	82.2	1.6384		
90.8	1.5888	91.5	1.6061	93.2	1.6356		
95.8	1.5874	96.1	1.6022	96.3	1.6338		
101.5	1.5827	100.8	1.5985	99.3	1.6310		
105.6	1.5813	107.0	1.5928	103.1	1.6274		
114.0	1.5727	115.0	1.5890	115.0	1.6167		
120.0	1.5686	118.7	1.5834	123.5	1.6111		
125.0	1.5625	122.0	1.5806	131.0	1.6031		
131.0	1.5589	127.0	1.5784				
		131.5	1.5724				

Figure 1. Equivalent volume vs. equivalent fraction of a univalent nitrate plot (at 100 °C) for Mg(NO₃)₂·6H₂O-(Na, K)NO₃ systems.

with the values 41.46 and 49.64 cm^3 equiv⁻¹, obtained by extrapolating the equivalent volumes of molten NaNO₃ and KNO₃, computed from the data of McAuley et al (5), from the temperature of measurements to 100 °C. This discrepancy could be considered as a reflection of some systematic changes in the hydration of Mg²⁺ with the composition, in such a way that the volume-composition plots still remain linear.

[#] Mole percent KNO₃

Table III. Density-Temperature and Equivalent Volume-Temperature Equations for Mg(NO₃)_{2*}6H₂O-MNO₃ Mixtures

Moi %	Temp		$\rho = a -$	- <i>bt</i> (g cm ⁻³)			$V_{e} = A +$	<i>Bt</i> (cm ³ eq	uiv ⁻¹)	10 ⁴ α,
MNO ₃	range, °C	а	10 ³ b	SE	Max dev	A	10 ² B	SE	Max dev	deg ⁻¹
				Mg(NO ₃)	2-6H2O-NaNO3					
9.63	94-128	1.6258	0.784	0.0007	-0.0011	77.29	4.17	0.03	+0.04	5.12
14.9	93-132	1.6435	0.879	0.0013	+0.0026	75.58	4.58	0.07	-0.13	5.71
20.5	89-129	1.6571	0.807	0.0009	-0.0013	74.09	4.09	0.05	+0.07	5.23
25.0	96–128	1.6902	1.007	0.0016	-0.0024	71.85	4.93	0.07	+0.12	6.42
				Mg(NO ₃)	2•6H2O-KNO3					
4.0	85-128	1.6360	1.024	0.0031	-0.0050	77.73	5.56	0.16	+0.27	6.67
14.46	82-132	1.6267	0.783	0.0007	+0.0018	77.30	4.14	0.03	-0.07	5.08
19.0	89-130	1.6433	0.823	0.0008	+0.0013	76.02	4.28	0.04	-0.07	5.33
22.36	86-131	1.6638	0.799	0.0012	-0.0024	74.57	4.05	0.07	-0.11	5.15
26.56	87~131	1.6804	0.813	0.0010	+0.0020	73.66	3.93	0.05	-0.12	5.06
40.0	82-131	1.7058	0.771	0.0023	-0.0041	70.92	3.60	0.10	+0.19	4.83

Table IV. Equivalent Volume-Composition isotherms (at 100 °C) for Mg(NO₃)₂·6H₂O-MNO₃ Systems

	Comp range	$V_{\rm e}$ (cm ³ equiv ⁻¹) = A - Bx'					
System	(equiv fraction of MNO ₃)	A	В	SE	Max dev	V _{Mg}	V _M
Mg(NO ₃) ₂ •6H ₂ O-NaNO ₃ ^a Mg(NO ₃) ₂ •6H ₂ O-KNO ₃	0.0-0.143 0.0-0.25	83.99 84.05	50.23 39.10	0.10 0.42	+0.18 +0.5	83.99 84.05	33.76 44.95

^a Equiv volume for Mg(NO₃)₂•6H₂O adopted from ref 4.

in which A and B are characteristic of the temperature. Values of these coefficients (at 100 °C) for the Mg(NO₃)₂·6H₂O--MNO₃ system are presented in Table IV. The partial equivalent volumes (Vis) of the constituents were obtained by extrapolating these isotherms. A computed value of 84.02 cm³ equiv⁻¹ for the partial equivalent volume of magnesium nitrate hexahydrate at 100 °C agrees favorably with the value 83.94 cm³ equiv⁻¹ obtained from direct measurement (4). The values of 33.76 and 44.95 cm³ equiv⁻¹, for the partial equivalent volume of NaNO₃ and KNO₃, respectively, at 100 °C, are considerably lower as compared

Literature Cited

- (1) Braunstein, J., Orr, L., McDonald, W., J. Chem. Eng. Data, 12, 415 (1967).
- (2)
- (3)
- (4) (5)
- Husband, L. J. B., *J. Sci. Instrum.*, **35**, 300 (1958). Jain, S. K., *J. Chem. Eng. Data*, **18**, 397 (1973). Jain, S. K., *J. Chem. Eng. Data*, **22**, 383 (1977). McAuley, W. J., Rhodes, E., Ubbelohde, A. R., *Proc. R. Soc. London, Ser. A*, **289**, 151 (1966). (6) Rao, K. J., Helphrey, D. B., Angell, C. A., Phys. Chem. Glasses, 14, 26
- (1973).

Received for review February 24, 1977. Accepted August 4, 1977.